To n° 14

Grammaires non contextuelles

1 Exemples de dérivations

- 1. Les dérivations (b), et (d) sont vraies.
- 2. Les dérivations (a), (c), et (d).
- 3. On a $\{ab, ba, aab\} \subseteq \mathcal{L}(\mathcal{G})$. En effet,
 - $-- S \Rightarrow D \Rightarrow aTb \Rightarrow ab,$
 - $S \Rightarrow D \Rightarrow bTa \Rightarrow ba,$
 - $-- S \Rightarrow D \Rightarrow aTb \Rightarrow aXb \Rightarrow aab.$
- 4. On a $\varepsilon \notin \mathcal{L}(\mathcal{C})$, $aa \notin \mathcal{L}(\mathcal{C})$ et $bb \notin \mathcal{L}(\mathcal{C})$.
- 5. Le langage $\mathcal{L}(\mathcal{G})$ est l'ensemble des mots non palindromes.

2 Arbres de dérivations

1.

Figure 1 – Arbre de dérivation de ab+bc dans la grammaire ${\mathcal G}$

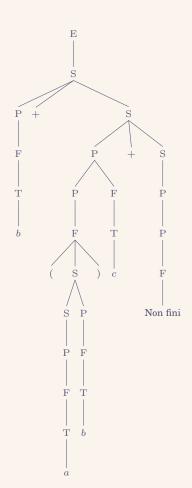


FIGURE 2

2.

3 Construction de grammaires

$$\begin{split} \mathbf{1}. & \quad - \ \mathscr{G}_0 = (\varSigma, \{\mathbf{L}, \mathbf{A}, \mathbf{S}\}, \{\mathbf{S} \to \mathbf{L}\mathbf{L}\mathbf{L}\mathbf{A}, \mathbf{L} \to a \mid b, \mathbf{A} \to \mathbf{L}\mathbf{A} \mid \varepsilon\}, \mathbf{S}), \\ & \quad - \ \mathscr{G}_1 = (\varSigma, \{\mathbf{L}, \mathbf{A}, \mathbf{S}\}, \{\mathbf{S} \to \mathbf{A}a\mathbf{A}a\mathbf{A}a\mathbf{A}, \mathbf{A} \to \mathbf{L}\mathbf{A} \mid \varepsilon, \mathbf{L} \to a \mid b\}, \mathbf{S}), \\ & \quad - \ \mathscr{G}_2 = (\varSigma, \{\mathbf{S}, \mathbf{V}\}, \{\mathbf{S} \to a\mathbf{X}a \mid b\mathbf{X}b, \mathbf{X} \to a\mathbf{X} \mid b\mathbf{X} \mid \varepsilon\}, \mathbf{S}), \end{split}$$

- $$\begin{split} &-\mathscr{G}_3(\varSigma, \{\mathtt{S}, \mathtt{X}\}, \{\mathtt{S} \to \mathtt{X}, \mathtt{X} \to \mathtt{S}\}, \mathtt{S}). \\ 2. &-\mathscr{G}_4 = (\varSigma, \{\mathtt{L}, \mathtt{S}, \mathtt{X}\}, \{\mathtt{S} \to \mathtt{LX}, \mathtt{L} \to a \mid b, \mathtt{X} \to \mathtt{LLX} \mid \varepsilon\}, \mathtt{S}), \\ &-\mathscr{G}_5 = (\varSigma, \{\mathtt{S}, \mathtt{X}\}, \{\mathtt{S} \to \mathtt{X}a\mathtt{X}, \mathtt{X} \to a\mathtt{X} \mid b\mathtt{X} \mid \varepsilon\}, \mathtt{S}), \\ &-\mathscr{G}_6 = (\varSigma, \{\mathtt{S}, \mathtt{X}\}, \{\mathtt{S} \to a\mathtt{S}a \mid b\mathtt{S}b \mid \mathtt{X}, \mathtt{X} \to \varepsilon \mid a \mid b\}, \mathtt{S}), \\ &-c.f. \text{ exercice 1.} \\ 3. &-\mathscr{G}_8 = (\varSigma, \{\mathtt{S}\}, \{\mathtt{S} \to \varepsilon \mid a\mathtt{S}b\}, \mathtt{S}), \\ &-\mathscr{G}_9 = (\varSigma, \{\mathtt{S}, \mathtt{X}\}, \{\mathtt{S} \to a\mathtt{S}b \mid \mathtt{S}\mathtt{X}, \mathtt{X} \to b\mathtt{X} \mid \varepsilon\}, \mathtt{S}), \\ &-\mathscr{G}_{10} = (\varSigma, \{\mathtt{S}\}, \{\mathtt{S} \to a\mathtt{S}bb \mid \mathtt{S}b \mid \varepsilon\}, \mathtt{S}) \end{split}$$
- 4 Raisonner par induction sur une grammaire
 - 1. Montrons le par induction.
 - Cas S $\rightarrow a$ S. Soit w = aw' un mot, où ba n'est pas un sous-mot de w'. Alors, ba n'est pas un sous-mot de w = aw'.
 - Cas S \to Sb. Soit w=w'b un mot, où ba n'est pas un sous-mot de w'. Alors, ba n'est pas un sous-mot de w=w'b.
 - Cas $S \to \varepsilon \mid a \mid b$. Le mot ba n'est pas un sous-mot de a, ni de b, ni de ε .
 - 2. Montrons, par double-inclusion, que $\mathcal{L}(\mathcal{C}) = \mathcal{L}(a^*b^*)$.

 $- \mathcal{G}_{11} = (\Sigma, \{S \to aSb \mid bSa \mid aS \mid SS \mid \varepsilon\}, S),$

"
Soit $w \in \mathcal{Z}(a^*b^*)$. Il existe m et n deux entiers tels que $w=a^nb^m$. On applique la dérivation

$$\underbrace{\mathbb{S} \Rightarrow a\mathbb{S} \Rightarrow aa\mathbb{S} \Rightarrow \cdots \Rightarrow a^n\mathbb{S}}_{n \text{ fois}} \Rightarrow \underbrace{a^n\mathbb{S}b \Rightarrow a^n\mathbb{S}bb \Rightarrow \cdots \Rightarrow a^n\mathbb{S}b^m}_{m \text{ fois}} \Rightarrow a^nb^m.$$

"⊆" D'après la question 1, on a ce sens de l'inclusion.

5 Ambigüité

6 Langage de Dyck

- 1. On suppose ce langage reconnaissable par un automate à n états. On considère le mot $w=(^n\cdot)^n$, donc $|w|\geqslant n$. Ainsi, il existe x,y et z trois mots tels que w=xyz, $|xy|\leqslant n$, $y\neq \varepsilon$ et $\forall p\in \mathbb{N},\ xy^pz\in \mathscr{L}(\mathscr{G})$. Soit alors $p\in \llbracket 1,n-1\rrbracket$ et $q\in \llbracket 1,n-p\rrbracket$ tels que $x=(^p,y=(^q$ et $z=(^{n-q-p}\cdot)^n$. Ainsi, $xy\in \mathscr{L}(\mathscr{G})$, ce qui est absurde. On en déduit que $\mathscr{L}(\mathscr{G})$ n'est pas reconnaissable, il n'est donc pas régulier.
- 2. On pose $\mathscr{G} = (\Sigma, \{S\}, \{S \to (S) \mid SS \mid \varepsilon\}, S)$.
- 3. On le montre par induction.
 - Cas S $\rightarrow \varepsilon$. On a $|\varepsilon|_{(} = 0 = |\varepsilon|_{)}$.
 - Cas S \to (S). Soit $u \in \mathcal{L}(\mathcal{C})$ avec $|u|_{(}=|u|_{)}=n.$ Ainsi, $|(u)|_{(}=|(u)|_{)}=n+1.$
 - Cas S \rightarrow SS. Soient u et v deux mots de $\mathcal{L}(\mathcal{C})$ tels que $|u|_{(}=|u|_{)}=n$ et $|v|_{(}=|v|_{)}=m$. Alors, $|u\cdot v|_{(}=|v\cdot u|_{)}=n+m$.
 - Montrons par induction \mathcal{P}_u : « pour tout v préfixe de u, $|v|_{(} \geqslant |v|_{)}$. »
 - **Cas** S $\rightarrow \varepsilon$. Le seul préfixe de ε est ε , et on a bien $|\varepsilon|_{(=0)} = 0 = |\varepsilon|_{(=0)}$.
 - Cas S \to (S). Soit u un mot de $\mathscr{L}(\mathscr{G})$ vérifiant \mathscr{P}_u . Soit v un préfixe de (u). On procède par induction sur v.
 - Cas $v = \varepsilon$ ou (. ok.
 - Cas (\tilde{u} , où \tilde{u} est un préfixe de u. Par hypothèse d'induction, $|\tilde{u}|_{(}\geqslant |\tilde{u}|_{)}$ donc $|(\tilde{u}|_{(}=|(\tilde{u}|_{)}.$
 - Cas (u). Par hypothèse d'induction, $|u|_{(\geqslant |u|)}$ donc $|(u)|_{(\geqslant |u|)}$.
- $\begin{array}{l} \text{4. On note } \overline{w}^j = \left|w_{\llbracket 0,j\rrbracket}\right|_{(} \left|w_{\llbracket 0,j\rrbracket}\right|_{)}. \text{ Alors les deux conditions se traduisent par } \overline{w}^{|w|} = 0 \\ \text{ et } \forall i \in \llbracket 0,|w|-1\rrbracket, \overline{w}^i \geqslant 0. \end{array}$

7 Listes OCAML

On pose $\mathscr{G} = (\Sigma, \{S, L, B\}, \{S \to [L] \mid [], L \to B; L \mid B, B \to \mathsf{true} \mid \mathsf{false}\}, S).$

8 Mots de Łukasiewicz

- 1. On a $\Sigma \cap \mathcal{L} = \{\Box\}$, $\Sigma^2 \cap \mathcal{L} = \emptyset$ et $\Sigma^3 \cap \mathcal{L} = \{\bigcirc\Box\Box\}$.
- 2. Montrons que $\Sigma^{2N} \cap \mathcal{Z} = \emptyset$, pour tout $N \in \mathbb{N}^*$. (Dans le cas N = 0, le seul mot est ε , et il n'est pas dans \mathcal{Z} .) Soit $w \in \Sigma^{2N} \cap \mathcal{Z}$. On sait que $-1 = \overline{w}^{|w|} = \overline{w}^{|w|-1} + \text{Va}(w_{|w|}) \geqslant \text{Va}(w_{|w|})$, d'où $w_{|w|} = \square$, et $\overline{w}^{|w|-1} = 0$. On pose $w = u \cdot \square$, le mot u est donc de longueur impaire. Or, la somme $\sum_{k=1}^{|u|} \text{Va}(w_i)$ est une somme d'un nombre impaire de termes valant -1 ou 1, elle ne peut pas être nulle. Mais, comme $\overline{w}^{|w|-1} = 0$, donc elle est nulle, une contradiction. On en déduit que $\mathcal{Z} \cap \Sigma^{2N} = \emptyset$. Par suite, on conclut que \mathcal{Z} ne contient pas de mots pairs.
- 3. On suppose $\mathscr L$ reconnaissable par un automate $\mathscr A$ à n états. On considère le mot $w=\bigcirc^n\cdot \square^n\cdot \square\in \mathscr L$. Alors, par application du lemme de l'étoile à l'automate $\mathscr A$ avec ce mot w, il existe donc x,y et z trois mots de \varSigma^* tels que $w=xyz,|xy|\leqslant n,y\ne \varepsilon$ et, pour tout $p\in \mathbb N, xy^pz\in \mathscr L$. D'où, $x=\bigcirc^k,y=\bigcirc^j$ et $z=\bigcirc^{n-k-j}\cdot \square^{n+1}$, où k et j sont des entiers. De plus, $j\ne 0$ car, sinon, $y=\varepsilon$. Alors, $xy^pz\in \mathscr L$, pour tout $p\in \mathbb N$. En particulier, pour $p=0, xz\in \mathscr L$. Or, $xz=\bigcirc^{n-j}\cdot \square^{n+1}\not\in \mathscr L$ car $\overline{xz}^{|xz|}=(n-j)-(n+1)=-j-1\ne -1$ car $j\ne 0$. On en déduit donc que que $\mathscr L$ n'est pas reconnaissable par un automate à n états. Ceci étant vrai pour tout n, alors $\mathscr L$ n'est pas un langage régulier.

4.

Code 1 – Fonction est_luka testant si w est un mot de Łukasiewicz

- 5. Soit $w=u\cdot v\in\mathcal{L}$, où $u\neq\varepsilon$ est un préfixe strict de w. Alors, $0\leqslant\overline{w}^{|u|}=\overline{u}^{|u|}\neq-1$ donc $u\not\in\mathcal{L}$.
- 6. Soient u et v deux mots de \mathcal{L} . On pose $w=\bigcirc \cdot u \cdot v$. Montrons que $w\in \mathcal{L}$. On pose n=|u|, et m=|v|.
 - $\text{ On a } \overline{w}^0 = 0 \geqslant 0,$
 - et $\overline{w}^1 = \text{Va}(\bigcirc) = 1 \geqslant 0$,
 - et, pour tout $i \in [1, n[, \overline{w}^{i+1} = \overline{u}^i + \forall a(\bigcirc) \geqslant \forall a(\bigcirc) \geqslant 0$,
 - et, pour tout $i \in [1, m]$, $\overline{w}^{i+n+1} = \overline{u}^n + \overline{v}^i + \forall a(\bigcirc) = \overline{v}^i \geqslant 0$,
 - et finalement, $\overline{w}^{n+m+1} = \overline{u}^n + \overline{v}^m + \text{Va}(\bigcirc) = -1 1 + 1 = -1$.

On en conclut que $w \in \mathcal{L}$.

7. Soit $w \in \mathcal{L}$, un mot de taille n. Comme montré précédemment, $\overline{w}^{n-1} = 0$. Ainsi, l'ensemble $\{k \in [\![1,n]\!] \mid \overline{w}^i = 0\}$ est une partie de $\mathbb N$ non vide, elle admet donc un minimum que l'on notera k. De plus, on a montré que $w_0 = 0$. On en déduit que w peut être décomposé en

$$w = \bigcirc \cdot \underbrace{w_2 w_3 \dots w_k}_{u} \cdot \underbrace{w_{k+1} w_{k+2} \dots w_n}_{v}.$$

Montrons que u et v sont des mots de \mathcal{L} . D'une part, pour $i \in [\![1,k-2]\!]$, $0 < \overline{w}^{i+1} = \overline{u}^i + \text{va}(\bigcirc)$, d'où $\overline{u}^i \geqslant 0$. De plus, $0 = \overline{w}^k = \overline{u}^{k-1} + \text{va}(\bigcirc)$, d'où $\overline{u}^{k-1} = \overline{u}^{|u|} = -1$. Également, pour $i \in [\![1,n-k-1]\!]$, $0 \leqslant \overline{w}^{k+i} = \overline{w}^k + \overline{v}^i = \overline{v}^i$. Finalement, $-1 = \overline{w}^n = \overline{w}^k + \overline{v}^{n-k} = \overline{v}^{|v|}$. On en conclut que u et v sont bien des mots de \mathcal{L} .

Montrons, à présent, l'unicité de la décomposition. On suppose qu'il existe u' et v' deux mots de $\mathcal L$ tels que $w=\bigcirc \cdot u' \cdot v'$. Nous savons, en particulier, que $\overline{w}^{1+|u'|}=0$, afin de

maintenir la condition $u\in\mathcal{L}$. Alors, $1+|u'|\leqslant p$, et donc $|u'|\geqslant |u|$. Le mot u' est donc un préfixe de u. Au vu de la question 5., afin que u' soit un mot de \mathcal{L} , il est nécessaire que u' ne soit pas un préfixe strict de u. On en déduit que u'=u.

8. On utilise habilement la question précédente, et on pose

$$\mathcal{G} = (\{L\}, \Sigma, \{L \to \bigcirc LL \mid \bigcirc\}, L).$$

La question précédente montre la non-ambigüité de la grammaire, et que $\mathcal{L}(\mathcal{G})=\mathcal{L}.$

9.